62 research outputs found

    On the reconstruction of convex sets from random normal measurements

    Full text link
    We study the problem of reconstructing a convex body using only a finite number of measurements of outer normal vectors. More precisely, we suppose that the normal vectors are measured at independent random locations uniformly distributed along the boundary of our convex set. Given a desired Hausdorff error eta, we provide an upper bounds on the number of probes that one has to perform in order to obtain an eta-approximation of this convex set with high probability. Our result rely on the stability theory related to Minkowski's theorem

    Handling convexity-like constraints in variational problems

    Full text link
    We provide a general framework to construct finite dimensional approximations of the space of convex functions, which also applies to the space of c-convex functions and to the space of support functions of convex bodies. We give estimates of the distance between the approximation space and the admissible set. This framework applies to the approximation of convex functions by piecewise linear functions on a mesh of the domain and by other finite-dimensional spaces such as tensor-product splines. We show how these discretizations are well suited for the numerical solution of problems of calculus of variations under convexity constraints. Our implementation relies on proximal algorithms, and can be easily parallelized, thus making it applicable to large scale problems in dimension two and three. We illustrate the versatility and the efficiency of our approach on the numerical solution of three problems in calculus of variation : 3D denoising, the principal agent problem, and optimization within the class of convex bodies.Comment: 23 page

    Lower bounds for k-distance approximation

    Get PDF
    Consider a set P of N random points on the unit sphere of dimension d−1d-1, and the symmetrized set S = P union (-P). The halving polyhedron of S is defined as the convex hull of the set of centroids of N distinct points in S. We prove that after appropriate rescaling this halving polyhedron is Hausdorff close to the unit ball with high probability, as soon as the number of points grows like Omega(dlog(d))Omega(d log(d)). From this result, we deduce probabilistic lower bounds on the complexity of approximations of the distance to the empirical measure on the point set by distance-like functions

    Minimal geodesics along volume preserving maps, through semi-discrete optimal transport

    Get PDF
    We introduce a numerical method for extracting minimal geodesics along the group of volume preserving maps, equipped with the L2 metric, which as observed by Arnold solve Euler's equations of inviscid incompressible fluids. The method relies on the generalized polar decomposition of Brenier, numerically implemented through semi-discrete optimal transport. It is robust enough to extract non-classical, multi-valued solutions of Euler's equations, for which the flow dimension is higher than the domain dimension, a striking and unavoidable consequence of this model. Our convergence results encompass this generalized model, and our numerical experiments illustrate it for the first time in two space dimensions.Comment: 21 pages, 9 figure

    An algorithm for optimal transport between a simplex soup and a point cloud

    Get PDF
    We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61--76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh

    Light in Power: A General and Parameter-free Algorithm for Caustic Design

    Get PDF
    We present in this paper a generic and parameter-free algorithm to efficiently build a wide variety of optical components, such as mirrors or lenses, that satisfy some light energy constraints. In all of our problems, one is given a collimated or point light source and a desired illumination after reflection or refraction and the goal is to design the geometry of a mirror or lens which transports exactly the light emitted by the source onto the target. We first propose a general framework and show that eight different optical component design problems amount to solving a light energy conservation equation that involves the computation of visibility diagrams. We then show that these diagrams all have the same structure and can be obtained by intersecting a 3D Power diagram with a planar or spherical domain. This allows us to propose an efficient and fully generic algorithm capable to solve these eight optical component design problems. The support of the prescribed target illumination can be a set of directions or a set of points located at a finite distance. Our solutions satisfy design constraints such as convexity or concavity. We show the effectiveness of our algorithm on simulated and fabricated examples

    Handling convexity-like constraints in variational problems

    No full text
    International audienceWe provide a general framework to construct finite dimensional approximations of the space of convex functions, which also applies to the space of c-convex functions and to the space of support functions of convex bodies. We give estimates of the distance between the approximation space and the admissible set. This framework applies to the approximation of convex functions by piecewise linear functions on a mesh of the domain and by other finite-dimensional spaces such as tensor-product splines. We show how these discretizations are well suited for the numerical solution of problems of calculus of variations under convexity constraints. Our implementation relies on proximal algorithms, and can be easily parallelized, thus making it applicable to large scale problems in dimension two and three. We illustrate the versatility and the efficiency of our approach on the numerical solution of three problems in calculus of variation : 3D denoising, the principal agent problem, and optimization within the class of convex bodies

    Discrete optimal transport: complexity, geometry and applications

    No full text
    International audienceIn this article, we introduce a new algorithm for solving discrete optimal transport based on iterative resolutions of local versions of the dual linear program. We show a quantitative link between the complexity of this algorithm and the geometry of the underlying measures in the quadratic Euclidean case. This discrete method is then applied to investigate to wo optimal transport problems with geometric flavor: the regularity of optimal transport plan on oblate ellipsoids, and Alexandrov's problem of reconstructing a convex set from its Gaussian measure
    • …
    corecore